BBA 72557

Rubidium transport in Neurospora crassa

José Ramos and Alonso Rodriguez-Navarro *

Departamento de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, 14071 Córdoba (Spain)

(Received November 7th, 1984)

Key words: Rb⁺ transport; K⁺ dependence; Kinetics; (N. crassa)

 Rb^+ transport in low- K^+ cells of *Neurospora crassa* is biphasic, transport at millimolar Rb^+ being added to a transport process which saturates in the micromolar range. Both processes exhibit Michaelis-Menten kinetics, but in the micromolar phase the kinetic parameters depend on the K^+ content of the cell (the lower the K^+ content the lower the K_m and the higher the V_{max}). Normal- K^+ cells, suspended in a buffer with millimolar K^+ , do not present Rb^+ transport in the micromolar range. Millimolar transport in these cells presents kinetics which depend on the K^+ in buffer (the higher the K^+ the higher the K_m), although the K^+ content of the cells is constant. Na^+ inhibits competitively Rb^+ transport in low- K^+ and normal- K^+ cells, but, even when the differences between the Rb^+ K_m values are more than three orders of magnitude, the apparent dissociation constant for Na^+ is the same, and millimolar, in both cases.

Introduction

In all forms of life, cells require K⁺, and accumulate K⁺, generally, against significant transmembrane concentration gradients. In cells of higher plants, fungi, and algae, the existence of a cell wall that can support high turgor presures determines the ability of growing in very diluted media. In these media, most substrates must move against high concentration gradients, K⁺ being a good example of this situation, because of the high K⁺ acitivity in the cellular water.

Until recently literature has suggested that higher plants and fungi were considerably different in their K^+ requirements and transport. Whereas higher plants thrive and transport K^+ at concentrations in the growing medium in the micromolar range (even lower than 1 μ M K^+) [1,2], it was thought that both Saccharomyces cerevisiae [3] and Neurospora crassa [4] required 0.2–0.5 mM

K⁺ for growth, and had transport systems that presented half-maximum rates in the millimolar range [5,6]. Recent investigations, however, have shown that S. cerevisiae grows at micromolar K⁺, provided that neither NH₄ nor Na⁺ are at millimolar concentrations, and has a transport system that saturates in the micromolar range [7]. In addition to the micromolar transport, S. cerevisiae has another K⁺ transport mode opperating at millimolar K+, both resembling system 1 and system 2 in higher plants [1,2]. In low-K+ cells of Neurospora, K+ transport in the micromolar range has been demonstrated (Rodríguez-Navarro, A., Blatt, M.R. and Slayman, C.L., unpublished data), but the possibility of two transport modes (or systems), as in S. cerevisiae [7] or plants [1,2] had not been investigated.

In the present paper we report the characteristic of Rb⁺ transport in *Neurospora* both in the micromolar and millimolar ranges, and discuss these results in connection with K⁺ and Rb⁺ transport in higher plants.

^{*} To whom correspondence should be addressed.

Materials and Methods

Preparation of cells

Wild-type RL21a of Neurospora crassa was used throughout this work. The general methods of handling the cells have been described previously [4]. $3 \cdot 10^6$ conidia were inoculated per ml of a medium of the following composition: 15 mM (NH₄)₂HPO₄; 8.4 mM citric acid; 0.81 mM MgSO₄; 0.68 mM CaCl₂; 2% saccharose, plus trace elements and biotine as previously described [8]. The pH was adjusted to 5.8 with NH₄OH. To this medium, KCl was added at two different levels, 0.25 mM and 37 mM, to prepare low-K⁺ cells and normal-K⁺ cells, respectively.

For low-K⁺ cells, cultures were incubated until the external K⁺ dropped to 10–15 μM, which took about 12 h. At this moment, the size of the cells was similar to 10-h-old normal cultures, and the K⁺ content was about a half of normal. For normal-K⁺ cells cultures were incubated during 10 h in 37 mM K⁺ medium. In both cases, cells were removed by filtration, washed with water, and suspended at 0.5–1.0 mg (dry weight) ml⁻¹ in 10 mM 4-morpholineethanesulphonic acid, 0.1 mM MgCl₂, 1% glucose, brought to pH 5.8 with Ca(OH)₂. Low-K⁺ cells were suspended in the buffer without added K⁺, and normal -K⁺ cells, except in experiments of Fig. 1, in buffer with 0.5, 1.0 or 2.0 mM K⁺.

In some experiments, low- K^+ cells were harvested before external K^+ dropped to 15 μ M. By this procedure, we obtained cells with various K^+ contents (cf. Table I). These cells were used as those incubated up to 15 μ M external K^+ .

Rb + transport

Cells were allowed to equilibrate in buffers for 5 to 15 min, and then Rb⁺ (RbCl was used unless otherwise stated) was added. At times, samples were taken, the cells washed with water, transferred to a new filter and washed again. After acid extraction, cations were analyzed by atomic absorption spectrophotometry.

Initial rates of uptake were determined from the plots of Rb⁺ content versus time. Five samples were taken in five minutes and usually, the five points were in a straight line.

Cation contents expressed in nmol·mg⁻¹ were

occasionally expressed as millimolar by dividing by 2.5 [4].

Results

Rb+ transport

When examined in a broad range of Rb+ concentrations (10 µM to 100 mM), the initial rate of Rb⁺ uptake (zero-trans influx) showed an apparent saturation in the micromolar range, but when Rb⁺ reached the millimolar range there was a further increase in rate, and subsequent saturation (Fig. 1). The actual relationship between Rb⁺ transport rate and concentration depended on the K⁺ status of the cells. In washed cells from high-K⁺ media, transport was slower than in cells harvested from low-K+ media, in which the K+ content was below the normal content. In this last case, the lower the K⁺ content of the cells, the higher the Rb⁺ transport. From the Rb⁺ taken up, only a small proportion was in exchange with the internal K^+ (less than 25% for Rb⁺ above 15 μ M); thus the total cation content of the cells increased signifi-

Analyses of the initial rates of Rb^+ uptake between 15 μM and 200 μM Rb^+ , did not show significant deviations from a Michaelis-Menten kinetics, and K^+ showed a linear competitive inhibition on Rb^+ transport (Fig. 2) (apparent dis-

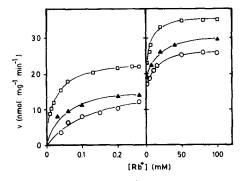


Fig. 1. Initial rates of Rb⁺ uptake as a function of the Rb⁺ concentration. (\bigcirc) Cells grown at high K⁺ (37 mM) washed and transferred to K⁺-free buffer (192 mM K⁺ content). (\triangle) Cells grown at 0.25 mM K⁺ and harvested when the external K⁺ was 50 μ M (140 mM K⁺ content). (\square) Cells grown at 0.25 mM K⁺ and harvested when the external K⁺ was 15 μ M (116 mM K⁺ content). Initial rates of uptake were determined as described in text.

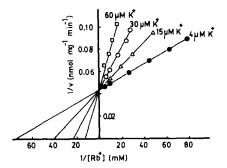


Fig. 2. Double-reciprocal plot of Rb⁺ transport in low-K⁺ cells at several K⁺ concentrations up to 0.2 mM Rb⁺. Experiments were carried out as in the upper curve of Fig. 1, cells with 116 mM K⁺ content. $4 \mu M K^+$ is the average K⁺ concentration, in K⁺-free buffer after Rb⁺ addition to the cells.

sociation constants, 6 μ M for Rb⁺ and 5 μ M for K⁺). The data of Fig. 1 could be fitted to a rate equation resulting from the addition of two processes, both following Michaelis-Menten equations (Table I) [1]. Although the kinetics might be also explained by a multiphasic process [9] or by two Michaelis-Menten terms plus a linear term [10], a dual system gave enough precision for our porposes and we did not try to make a more complex kinetic study.

In higher plants, the transport of Rb⁺ in the millimolar range showed a much lower activity when Rb⁺ sulfate was used instead of Rb⁺ chloride [1]. We investigated whether the anion had a similar effect in *Neurospora*, with negative results.

TABLE I

KINETIC PARAMETERS FOR Rb⁺ TRANSPORT IN LOW-K⁺ CELLS, AND WASHED CELLS WITH A NOR-MAL-K⁺ CONTENT

Kinetic parameters were calculated from data in Fig. 1 using the formula [1]:

$$v = \frac{V_{\max_1}[{\rm Rb}^+]}{K_{\min_1} + [{\rm Rb}^+]} + \frac{V_{\max_2}[{\rm Rb}^+]}{K_{\max_2} + [{\rm Rb}^+]}$$

Internal K ⁺ (mM)	(mM)	V_{\max_1} $(\text{nmol} \cdot \text{mg}^{-1} \cdot \text{min}^{-1})$	K _{m2} (mM)	V_{max_2} $(\text{nmol} \cdot \text{mg}^{-1} \cdot \text{min}^{-1})$
116	0.006	22	12.5	16.7
140	0.040	16	12.0	14.8
192	0.111	15	13.3	10.5

In yeast, the micromolar transport of K⁺ and Rb⁺ has been investigated in cells grown in the absence of NH₄⁺ using L-arginine phosphate medium [7]. In *Neurospora*, this approach was impossible because arginine inhibited Rb⁺ transport at low Rb⁺, and it also inhibited growth at low K⁺ (below 100 μ M K⁺) (not shown).

Millimolar Rb+ transport

In higher plants, the second phase of Rb⁺ transport (as in Fig. 1) has been proposed to correspond to the activity of a millimolar transport system [1], although other interpretations have been given [11]. In Neurospora, the two phases of Rb⁺ transport were characteristic only of low-K⁺ cells. Normal-K + cells which have not been washed (only centrifugated and suspended) did not show the phase of micromolar Rb⁺ transport. Similarly, neither washed normal-K+ cells nor low-K+ cells exposed to K⁺ for a few minutes showed micromolar transport. Therefore we studied Rb+ transport in the millimolar range in normal-K⁺ cells. Cells were grown in high K⁺ and, after washing, transferred to the buffer with different amounts of K⁺; once the steady state had been reached (10 min), Rb+, or Rb+ and K+, was added. In all cases, Rb+ transport did not appreciably deviate from a Michaelis-Menten kinetics, and K + showed a linear competitive inhibition. Table II summarizes the kinetic parameters of Rb⁺ transport for cells in steady state in different K+ concentrations. The apparent dissociation constant of Rb⁺

TABLIE II

KINETIC PARAMETERS FOR Rb⁺ TRANSPORT IN NORMAL-K⁺ CELLS IN STEADY-STATE WITH 0.5, 1.0 AND 2.0 mM K⁺

Parameters of transport were obtained from double reciprocal plots of Rb^+ transport. Cells were grown in 37 mM K^+ and after washing preincubated in buffer with 0.5, 1.0, 2.0 mM K^+ . Initial rates of uptake were determined as described in text, after the addition of Rb^+ or Rb^+ plus K^+ .

	[K ⁺] _i (mM)	Rb ⁺ K _m (mM)	K + K _i (mM)	$\frac{V_{\text{max}}}{(\text{nmol} \cdot \text{mg}^{-1} \cdot \text{min}^{-1})}$
0.5	182 ± 38	4.0	0.9	11.8
1.0	186 ± 19	10.5	3.5	11.1
2.0	182 ± 16	15.0	4.5	11.5

and K^+ for the porter varied with the K^+ -status of the cells. The higher the external K^+ (cells in steady state), the higher the apparent dissociation constants. The $V_{\rm max}$ of the process did not varied with the K^+ -status in normal- K^+ cells. Interestingly, although Rb^+ transport was affected by the external K^+ level in which the cells were in steady state, we did not find significant differences in the K^+ content of the cells. This suggests that internal K^+ is not the regulator of Rb^+ (K^+) transport in normal- K^+ cells. In these experiments, most of the Rb^+ taken up was in exchange with K^+ , and total cation content did not increase significantly.

Effect of Na + on Rb + transport

Na⁺ inhibited Rb⁺ transport competitively in both micromolar and millimolar modes (Fig. 3). The apparent dissociation constant of the porter for Na⁺ was millimolar in both modes of transport (14 mM in micromolar cells and 15 mM in millimolar cells in presence of 0.5 mM K⁺).

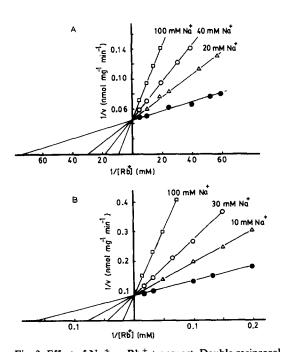


Fig. 3. Effect of Na⁺ on Rb⁺ transport. Double reciprocal plot of Rb⁺ transport at several Na⁺ concentrations in low-K⁺ cells (116 mM K⁺ content) (A), and normal-K⁺ cells in 0.5 mM K⁺ (B). Experiments were carried out as in Figs. 1 and 2 in presence of the indicated concentrations of Na⁺.

Fig. 4. Effect of glucose addition on the Rb⁺ transport of carbon-starved cells. (A) Low-K⁺ cells (116 mM K⁺ content) were suspended in K⁺-free, glucose-free buffer, and aerated for three hours. The cells were then transferred to fresh buffer (no glucose), preincubated 5 min and RbCl added (50 μ M) at time zero. In three experiments, glucose (1 mM) was added at minutes 0.5 (\bullet), 1.0 (\triangle), 1.5 (\square) (arrows). When glucose was added at time zero, uptake was not different from control (no glucose) experiment. (B) Normal-K⁺ cells were carbon-starved for three hours in 0.5 mM K⁺ buffer (no glucose) and suspended in fresh buffer. After 5 min of preincubation, RbCl (50 mM) was added (time zero) and 2.1 minutes later glucose (1 mM) was added.

Energy requirements

Rb⁺ transport, in the micromolar and millimolar modes, was sensitive to cyanide. The use of salicylhydroxamic acid with cyanide to inhibit the cyanide-insensitive oxidases [12] did not increase inhibition. In presence of cyanide, the inhibition of Rb⁺ transport was similar in low-K⁺ cells and in normal-K⁺ cells, even when, in millimolar cells, transport was downhill (50 mM external Rb⁺ would equilibrate to 125 nmol·mg⁻¹ in cells, or more considering the activity coeficient). In both cases, cyanide induced a significant K⁺ loss, which was even higher than the Rb⁺ gain.

To investigate the effect of depolarization of the membrane on Rb⁺ transport, we added glucose to carbon-starved cells [13]. In low-K⁺ cells, the effect was a clear inhibition when glucose was added after Rb⁺, but, surprisingly, the inhibition was lower if glucose was added soon after Rb⁺, and no inhibition resulted if added simultaneously. In normal-K⁺ cells, addition of glucose at any time produced a low transient inhibition of Rb⁺ uptake with a rapid recovery of the normal rate (Fig. 4).

Discussion

Present results show that Rb⁺ transport in Neurospora has the following characteristics: (i) in

low-K+ cells and washed cells with a normal-K+ content, Rb+ transport had two phases, which could be sufficiently explained by the addition of two Michaelis-Menten equations; (ii) in normal-K⁺ cells (unwashed cells) there was only one phase showing an apparent dissociation constant three orders of magnitude higher than that of the first phase in low-K⁺ cells; (iii) K⁺ and Rb⁺ competed for transport, and both had dissociation constants of the same order; (iv) Na+ was also a competitive inhibitor of Rb+ transport, but its apparent dissociation constants were similar in low-K+ and normal-K+ cells, comparable to that of Rb+ in normal-K+ cells; (v) micromolar transport took place with a low Rb⁺/K⁺ exchange, but transport in normal-K⁺ cells was mainly a Rb⁺/K⁺ exchange.

The most important conclusion from present results is that Rb⁺(K⁺) transport in Neurospora compared perfectly with transport models in higher plants [2], even with reference to the dependence on the K+-status of the cells (compare Fig. 1 with results in Ref. 14). Regarding the two modes of transport (micromolar and millimolar transport), micromolar transport was observed in K⁺starved cells obviously with the function of replenishing the cell to the normal K+ content. In contrast the low affinity transport, observed in normal-K+ cells, only had to provide the K+ required for growth. At this point, a pertinent question is whether the millimolar transport in normal-K⁺ cells is the second phase of transport in low-K⁺ cells. This question cannot be answered with the present results, but the insensitivity of the second phase to the K+-status of the cell (Table I) might indicate that this phase is not the expression of the millimolar K+ transport system. In fact, in normal-K⁺ cells, at 0.5 mM K⁺, the apparent $K_{\rm m}$ for Rb⁺ is 4 mM (Table II), three times lower than the apparent $K_{\rm m}$ of the second phase in low-K⁺ cells (Table I). For a K⁺ transport system, a more active transport would be expected in low-K⁺ cells. The second phase could be the Na⁺ transport system, as proposed in plants [15,16]. However, because Na⁺ inhibits Rb⁺ transport and has the same affinity for the carrier both in low- K^+ and normal- K^+ cells (Fig. 3), the existence of only one system for K^+ and Na⁺ transport cannot be ruled out. This system could have several modes of operation.

Previous works with Neurospora [4,5] reported a $K_{\rm m}$ of 11.8 mM for K⁺ uptake, which is not consistent with the present results. Those experiments were carried out in absence of ${\rm Ca}^{2+}$, and the lack of this cation may affects transport in Neurospora as it does in plants [17,18].

Acknowledgements

This work was supported by Grant number 1438-82 from the Comisión Asesora de Investigación Científica y Técnica, Spain.

References

- 1 Epstein, E., Rains, D.W. and Elzam, O.E. (1963) Proc. Natl. Acad. Sci. USA 49, 684-692
- 2 Epstein, E. (1966) Nature 212, 1324-1327
- 3 Camacho, M., Ramos, J. and Rodiguez-Navarro, A. (1981) Current Microbiol. 6, 295-299
- 4 Slayman, C.W. and Tatum, E.L. (1964) Biochim Biophys. Acta 88, 578-592
- 5 Slayman, C.L. and Slayman, C.W. (1968) J. Gen. Physiol. 52, 424-443
- 6 Armstrong, W. McD, and Rothstein, A. (1967) J. Gen. Physiol. 50, 967-988
- 7 Rodriguez-Navarro, A. and Ramos, J. (1984) J. Bacteriol. 159, 940-945
- 8 Vogel, H. (1956) Microbiol. Gen. Bull. 13, 42-46
- 9 Nissen, P. (1980) Physiol. Plant. 48, 193-200
- 10 Borstlap, A.C. (1981) Plant Cell Env. 4, 189-195
- 11 Laties, G.G. (1969) Ann. Rev. Plant. Physiol. 10, 89-116
- 12 Slayman, C.W., Rees, D.C., Orchard, P.P. and Slayman, C.L. (1975) J. Biol. Chem. 250, 396-408
- 13 Slayman, C.L. and Slayman, C.W. (1974) Proc. Natl. Acad. Sci. USA 71, 1935–1939
- 14 Glass, A.D.M. and Dunlop, J. (1978) Planta 141, 117-119
- 15 Rains, D.W. and Epstein, E. (1967) Plant Physiol. 42, 314–318
- 16 Rains, D.W. and Epstein E. (1967) Plant. physiol. 42, 319-323
- 17 Jacobson, L., Hannapel, R.J., Moore, D.P. and Schaedle, M. (1961) Plants Physiol. 36, 58-61
- 18 Epstein, E. (1961) Plant Physiol. 36, 437-444